Artikel ini dalam proses pengembangan atau penambahan |
---|
Dalam matematika , pecahan berlanjut atau pecahan kontinu ( bahasa Inggris : Continued fraction ) adalah sebuah ekspresi yang didapat melalui proses mewakili bilangan sebagai jawaban dari nya. [ 1 ] Bilangan bulat disebut koefisien dari pecahan berlanjut. [ 2 ]
Catatan
- ^ "Continued fraction - mathematics" .
- ^ ( Pettofrezzo & Byrkit 1970 , hlm. 150)
Referensi
- Siebeck, H. (1846). "Ueber periodische Kettenbrüche" . J. Reine Angew. Math . 33 . hlm. 68–70.
- Heilermann, J. B. H. (1846). "Ueber die Verwandlung von Reihen in Kettenbrüche" . J. Reine Angew. Math . 33 . hlm. 174–188.
- Magnus, Arne (1962). "Continued fractions associated with the Padé Table". Math. Z . 78 . hlm. 361–374.
- Chen, Chen-Fan; Shieh, Leang-San (1969). "Continued fraction inversion by Routh's Algorithm". IEEE Trans. Circuit Theory . 16 (2). hlm. 197–202. doi : 10.1109/TCT.1969.1082925 .
- Gragg, William B. (1974). "Matrix interpretations and applications of the continued fraction algorithm". Rocky Mount. J. Math . 4 (2). hlm. 213. doi : 10.1216/RJM-1974-4-2-213 .
- Jones, William B.; Thron, W. J. (1980). Continued Fractions: Analytic Theory and Applications. Encyclopedia of Mathematics and its Applications . 11 . Reading. Massachusetts: Addison-Wesley Publishing Company. ISBN 0-201-13510-8 .
- (1964) [Originally published in Russian, 1935]. Continued Fractions . University of Chicago Press . ISBN 0-486-69630-8 .
- Long, Calvin T. (1972), Elementary Introduction to Number Theory (edisi ke-2nd), Lexington: , LCCN 77-171950
- (1950). Die Lehre von den Kettenbrüchen . New York, NY: Chelsea Publishing Company.
- Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory , Englewood Cliffs: Prentice Hall , LCCN 77-81766
- Rockett, Andrew M.; Szüsz, Peter (1992). Continued Fractions . World Scientific Press. ISBN 981-02-1047-7 .
- H. S. Wall, Analytic Theory of Continued Fractions , D. Van Nostrand Company, Inc., 1948 ISBN 0-8284-0207-8
- Cuyt, A.; Brevik Petersen, V.; Verdonk, B.; Waadeland, H.; Jones, W. B. (2008). Handbook of Continued fractions for Special functions . Springer Verlag. ISBN 978-1-4020-6948-2 .
- Rieger, G. J. (1982). "A new approach to the real numbers (motivated by continued fractions)". Abh. Braunschweig.Wiss. Ges . 33 . hlm. 205–217.
Pranala luar
- Hazewinkel, Michiel , ed. (2001) [1994], , Encyclopedia of Mathematics , Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- An Introduction to the Continued Fraction
- Linas Vepstas Continued Fractions and Gaps (2004) reviews chaotic structures in continued fractions.
- Continued Fractions on the Stern-Brocot Tree at
- The Antikythera Mechanism I: Gear ratios and continued fractions
- Continued fraction calculator , WIMS.
- Continued Fraction Arithmetic Gosper's first continued fractions paper, unpublished. Cached on the Internet Archive 's Wayback Machine
- (Inggris) Weisstein, Eric W. "Continued Fraction" . MathWorld .
- Continued Fractions by Stephen Wolfram and Continued Fraction Approximations of the Tangent Function by Michael Trott, .
- A view into "fractional interpolation" of a continued fraction {1; 1, 1, 1, ... }
- Best rational approximation through continued fractions